Phases of linear difference equations and symplectic systems
نویسندگان
چکیده
منابع مشابه
Phases of Linear Difference Equations and Symplectic Systems
The second order linear difference equation (1) ∆(rk∆xk) + ckxk+1 = 0, where rk 6= 0 and k ∈ , is considered as a special type of symplectic systems. The concept of the phase for symplectic systems is introduced as the discrete analogy of the Bor̊uvka concept of the phase for second order linear differential equations. Oscillation and nonoscillation of (1) and of symplectic systems are investiga...
متن کاملOn Some Fractional Systems of Difference Equations
This paper deal with the solutions of the systems of difference equations $$x_{n+1}=frac{y_{n-3}y_nx_{n-2}}{y_{n-3}x_{n-2}pm y_{n-3}y_n pm y_nx_{n-2}}, ,y_{n+1}=frac{y_{n-2}x_{n-1}}{ 2y_{n-2}pm x_{n-1}},,nin mathbb{N}_{0},$$ where $mathbb{N}_{0}=mathbb{N}cup left{0right}$, and initial values $x_{-2},, x_{-1},,x_{0},,y_{-3},,y_{-2},,y_{-1},,y_{0}$ are non-zero real numbers.
متن کاملExact and numerical solutions of linear and non-linear systems of fractional partial differential equations
The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...
متن کاملLinear Difference Equations
Dynamic economic models are a useful tool to study economic dynamics and get a better understanding of relevant phenomena such as growth and business cycle. Equilibrium conditions are normally identified by a system of difference equations and a set of boundary conditions (describing limit values of some variables). Thus, studying equilibrium properties requires studying the properties of a sys...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematica Bohemica
سال: 2003
ISSN: 0862-7959,2464-7136
DOI: 10.21136/mb.2003.134182